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ABSTRACT
When streaming over the web, correlated videos (e.g., a series of
TV episodes) appear to bear considerable redundant clips, mostly
included in the intros, outros, recaps, and commercial breaks, lead-
ing to a waste of network traffic and playback time. Mainstream
video content providers have taken various measures to identify
these clips, but often result in unexpected and undesirable user
experiences. In this paper, we conduct a large-scale, crowdsourced
study to demystify the root causes of poor experiences. Driven by
the findings, we propose to reconsider the problem from a novel
perspective of scenes without going through the excessive video
frames, which pays special attention to how the contents of cor-
related videos are organized during video production. To enable
this idea, we design efficient approaches to the separation of video
scenes and the identification of visual redundancy. We build an
open-source system to embody our design, which achieves fast (e.g.,
taking ∼38 seconds to process a 45-minute video using a common
commodity server) and accurate (incurring only 770-ms deviation
on average) redundancy recognition on representative workloads.
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• Information systems→Deduplication;Web interfaces; •Com-
puting methodologies → Computer vision problems; Video
segmentation; Scene understanding.
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1 INTRODUCTION
Web video streaming consumes the majority of today’s Internet
traffic [3, 61], during which correlated videos (e.g., a series of TV
episodes or documentaries) are a common type of delivered con-
tent [62, 63]. From a user’s perspective, correlated videos usually
bear considerable redundant clips, mostly included in their intros,
outros, recaps, and intermediate commercial breaks. For example,
relative to the first episode ofNaruto, each of the remaining episodes
has as long as six minutes of redundant clips, accounting for ∼27%
of the length of an episode [19]. Naturally, users wish to skip these
redundant clips to achieve a more consecutive viewing experience,
as well as to save network traffic and playback time [8, 43, 69].

Driven by the wish of users, today’s mainstream video content
providers (VCPs) like Netflix [10] and Disney+ [6] have provided
users with functions for automatically skipping redundant clips
during video playback based on pre-generatedmarkers [5, 52]. How-
ever, these functions are currently far from satisfactory, resulting
in various undesirable experiences and user complaints [2, 9, 12].

To understand why such seemingly easy-to-mark redundant
clips could incur poor user experiences, we conduct a large-scale,
crowdsourced study on 145,976 correlated videos randomly selected
from eight popular VCPs (i.e., Netflix, Amazon Prime Video, Dis-
ney+, Hulu, HBO Max, iQIYI, Tencent Video, and Youku). These
videos belong to 4,640 series and cover a wide variety of genres
like action, anime, comedy, and drama; their information is listed
at https://SkipStreaming.github.io. Concretely, we first capture the
markers of redundant clips by playing the videos online and mean-
while intercepting the playback information. Then, we recruit 25
volunteers to manually check the correctness of these markers.

Our experiments reveal that a nonnegligible portion (14%) of
videos in our dataset have problematic redundancy markers, mani-
festing as four major symptoms in Table 1. To demystify their root
causes, we report them to corresponding VCPs and interview with
those who get back to our reports. Also, we survey relevant aca-
demic literature to infer the techniques adopted by the remaining
VCPs (who do not feed back). Below list our key findings.
• The video and audio encoding schemes adopted by VCPs make
it impossible to recognize redundant clips through byte-level
comparison. For a series of correlated videos, different encoding
parameters are set for different episodes to achieve the optimal
balance between quality and bitrate [27, 33, 58]. This makes the
raw byte data of visually redundant clips hardly the same.

• Many VCPs use computer vision (CV) techniques, in particular
deep learning-based ones [7, 37, 60], to recognize redundant clips.
Nevertheless, their performance is constrained by the oftentimes
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Table 1: Common patterns of unexpected and undesired experi-
ences regarding redundant clips in correlated web video streaming.

Pattern 1: Probabilistic skip on the same clip
A same redundant clip appears in a series of TV All studied
episodes. It is automatically skipped during the web- VCPs
based playback of Episode 3, but not for Episode 7.

Pattern 2: Abrupt skip
A redundant clip is skipped but with an incorrect All studied
duration that users can perceive. In considerable (16%) VCPs
cases, the deviation is longer than 5 seconds.

Pattern 3: Circumscribed skip iQIYI,
Only the redundant clips at the head or the tail of Tencent Video,
correlated videos are skipped. Youku

Pattern 4: Crash on skip Disney+,
When a skip action occurs, the web-based video Amazon
player crashes. Prime Video

limited computation resources, especially for the top VCPs that
publish tens of thousands of high-resolution videos every day [23,
31]. To mitigate this, even top VCPs would reduce the complexity
of CV models and only examine the heading and tailing parts of
a video, which inevitably sacrifices the detection accuracy.

• Alternatively, other VCPs compare the audio fingerprints (i.e.,
spectral features of rendered audios) of correlated videos [4, 73]
to detect redundant clips. In practice, this approach is vulnerable
to fingerprint collisions and lossy audio encoding. Thus, it is
hard to determine suitable similarity thresholds for different sets
of videos, causing the detection accuracy to be unpredictable.
To sum up, existing CV-based approaches could be accurate but

are rather time-consuming, since they need to analyze typically tens
of thousands of video frames when dealing with a correlated video.
In comparison, audio fingerprinting-based ones are lightweight
but oftentimes inaccurate, because the encoding and fingerprinting
processes introduce non-trivial noises and information loss.

In this paper, we reconsider the problem from a novel perspective,
i.e., how the contents of correlated videos are organized during video
production. We note that to make the story coherent and intriguing,
today’s correlated videos are pervasively organized as a sequence
of scenes. Representing a series of coherent events that take place in
order, scene is a widely-used concept in film making [40, 66] to help
video editors create more fascinating contents. As exemplified in
Figure 1, frames (a)–(e) depict a scene of the intro, and the remainder
belong to another scene showing a woman’s sweeping the floor.

Further dissecting the correlated videos, we have a key observa-
tion that all redundant clips are made up of one or more complete
scenes, rather than begin or end arbitrarily within a certain scene.
This is quite understandable—a redundant clip (e.g., an intro, an
outro, a recap, or a commercial break) is inserted into the main story
as a content-wise independent segment during video production.
Consequently, if we can effectively locate the scene transitions, we
are able to efficiently identify redundant clips by only examining
the few video frames near the transitions, without going through
the excessive frames that compose the video.

Prior efforts in detecting scene transitions either perform pixel-
level comparison between adjacent video frames [28, 36], or contin-
uously analyze visual features such as contrast, color histogram, and

Scene Transition

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: An example of a scene inside the intro sequence of the TV
series named The Crown, in which a crown is shot from different
angles as the background, followed by a scene transition.

SIFT [41, 56, 66]. However, they all involve intensive data process-
ing on a number of video frames and thus are still heavyweight. To
address this, we notice that scene transitions in a video are almost
always accompanied by distinct changes in acoustic characteristics
of the corresponding audio data. This is because switching to a new
scene implies the changes in characters’ voices, ambient noises,
background music, and so on. For example in Figure 1, the intro
scene (frames (a)–(e)) goes with the theme music; when the video
moves onto the main story (frames (f)–(h)), the audio part consists
of footstep and sweeping sounds. This insight offers us a unique
opportunity to efficiently separate scenes, since processing audio
data is much more lightweight than processing video contents [34].

To fulfill the above idea, we present audio-guided scene sketch, a
multimodal (i.e., acoustic-narrative-visual) fusion methodology that
uses audio and scene information as crucial guidance to achieve
lightweight video redundancy detection. At its core lies our de-
vised novel audio feature named scene-aware acoustic gradient (de-
noted as SceneGrad), which quantifies the variation in acoustic
characteristics of audio data to facilitate the detection of scene
transitions. Specifically, we first roughly split each video into ap-
proximate scenes by searching for the time points that manifest the
largest SceneGrad. Then, we perform fine-grained inter-episode
video frame matching near these time points to pinpoint the pre-
cise boundaries of scenes; to enable high-speed matching, we avoid
repetitive frame comparisons by means of multi-index hashing [53].

We implement the whole design into an open-source system
dubbed SkipStreaming. On our dataset, it achieves a high redun-
dancy recognition precision of 98% and recall of 93%with an average
deviation of 770 ms, outperforming existing solutions by over 20%.
Note that the 2% false positives are mainly caused by gradual visual
transitions such as fades and dissolves, which are not essential to
the story and thus would not affect user experiences. In terms of the
7% false negatives, their duration is very short (usually <5 seconds),
making them indistinguishable from neighboring scenes and thus
hardly affect user experiences either.

For a typical correlated video (e.g., a 1080P, 45-minute TV episode),
SkipStreaming takes only 38 seconds to precisely locate redundant
clips on a common commodity server with an Intel Xeon 10-core
CPU@2.4 GHz, 64-GB memory, and 960-GB SSD. Compared with
state-of-the-art (i.e.,CV-based) solutions that need tremendous well-
annotated video data for training [35, 72], SkipStreaming is faster by
at least an order of magnitude without any training prerequisites.

All the source code and data involved in this work are publicly
available at https://SkipStreaming.github.io.
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Figure 2: Classified occurrence rates of unex-
pected experiences with regard to each VCP.
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Figure 3: Ratio distribution of probabilistic
skips in the studied series of videos.
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Figure 4: Distribution of VCPs’ marker devia-
tions (set to zero if the marker is correct).

Table 2: Statistics of the studied VCPs and correlated videos.

VCP # Genre # Series # Episode

Amazon Prime Video 18 711 15,495
Disney+ 17 405 14,526
HBO Max 13 565 17,964

Hulu 15 428 22,035
iQIYI 21 478 16,024
Netflix 23 865 22,758

Tencent Video 14 634 18,404
Youku 20 554 18,770

All – 4,640 145,976

2 MOTIVATION
Watching correlated videos (e.g., a series of TV episodes and shows)
has been a prevalent activity among web users, which consumes
over 80% Internet traffic in peak hours [3, 49]. On the other side, to-
day’s correlated videos usually bear considerable visually redundant
clips in intros, outros, recaps, and intermediate commercials [30, 46,
51]. Due to the long duration, repeated contents, and unexpected
interruption, they always affect user experiences [37, 51]. A public
vote [13] shows that 95% users wish video content providers (VCPs)
to assist them in skipping redundant clips, since manually skipping
is frustrating—they always jump over the contents too short or too
far [1, 26], on account of varied locations of redundant clips [30, 59].

Driven by users’ demands [8, 69], many VCPs like Netflix and
Disney+ have provided functionalities for skipping redundant clips.
They either automatically skip them, or display a “skip” button.
However, these seemingly user-friendly functions are far from sat-
isfactory in practice, which have received plenty of negative com-
ments [2, 9] from users. Some inexperienced users even doubt that
these functions lead to failure in the whole streaming process [12].

Measurement study. To quantitatively understandwhy the seem-
ingly easy-to-mark redundant clips incur undesirable user experi-
ences, we conduct the first large-scale, crowdsourced measurement
study on redundancy skipping functions of eight popular VCPs.
These VCPs include Netflix, Amazon Prime Video, Disney+, Hulu,
HBO Max, iQIYI, Tencent Video, and Youku, covering more than
90% of the global market share in 2022 [14, 47, 48]. Note that all
the studied VCPs have provided the functionality for users to skip
redundant clips. For each VCP, we randomly sample 30% sets of

correlated videos from different genres in their libraries available in
the USA as of Oct. 2022. In total, we have 145,976 correlated videos
in our dataset. Table 2 lists the detailed statistics of them.

We next collect the timestamps of redundant clips marked by
the VCPs. An intuitive method is to monitor the DOM tree [45, 70]
of the playback web page, so as to examine when the “skip” button
appears and which time point the player seeks to after the skip
action is triggered. However, this approach is too time-consuming
since it needs to play the entire video (each costs tens of minutes).
To address this, we reverse engineer the streaming process of these
VCPs, and observe that all VCPs deliver their marked timestamp
information to the client browser during the playback page loading
(for initializing the player). Thus, we collect marker information
by deploying a puppet web browser to intercept network requests
and responses during playback page loading using the Puppeteer
library [11]. This enables us to gather marker information in merely
6 seconds on average for a video (i.e., ∼10 days in total).

We then check the correctness of the collected markers. Given
the subjectivity in recognizing redundant clips, we conduct a crowd-
sourcing study by recruiting 25 volunteer users of different genders,
ages (ranging from 21 to 48), and education levels (from undergrad-
uate to PhD) to help examine VCPs’ markers. Specifically, we dis-
tribute the videos in our dataset to them, and ask them to watch the
videos over the web to check whether redundant clips are skipped
correctly. If not, they are asked to manually mark the timestamp.
To improve efficiency, we sample video frames every five seconds
as a thumbnail hint for them, based on which they can quickly
pinpoint redundancy locations. Each video is examined by two vol-
unteers, and we average the timestamps if they both mark the clips.
If their judgments are inconsistent, we will participate to resolve it.
We also develop a browser plug-in that extracts the currentTime
property [17] from the video tag of playback pages, so that the
volunteers can mark redundant clips on a millisecond basis.

This study was conducted under a well-established IRB, and does
not raise any ethical issues.

Measurement findings. By analyzing the crowdsourcing results,
we have multi-fold findings on the prevalence and specific patterns
(listed in Table 1) of the unexpected experience of redundant clips
in correlated web video streaming.

First, we find that marking visual redundancy is in fact an error-
prone job for VCPs. Figure 2 shows the percentage of video episodes
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Figure 5: Architectural overview of SkipStreaming.

that have our identified symptoms. Users can experience redun-
dancy skipping issues in all the studied VCPs. Among them, Youku
induces the worst experience, with 54.7% of videos (that have redun-
dant clips) marked improperly. Besides, iQIYI, Tencent Video, and
Youku have a high circumscribed skip rate (>20%) since they only
mark redundancy in heading and tailing parts of videos. Also, as
the most popular VCP in recent years, Netflix incurs the least issues,
but there are still 16.7% episodes having problematic markers.

Further, we find the main experience issue to be that VCPs often
mark redundant clips probabilistically or inaccurately. As shown in
Figure 3, redundancy in a considerable portion (35.8% on average
for all VCPs) of video series is skipped probabilistically. This is
especially the case for Hulu, where over half of the series have at
least 8% episodes whose redundant clips cannot be skipped. We
attribute this to the fact that the “skip function” in Hulu has only
been available for two years [65], and many redundant clips still
have not been marked. Figure 4 shows the marker deviation of
each VCP. Except for Tencent Video that has an acceptable (81%)
accuracy, the other VCPs’ markers deviate from the right time for
5.72 seconds on average. Among these problematic markers, those
outside the redundant clips will cause users to miss video plots.
Note that even a single plot miss can significantly disturb users.

VCPs’ dilemma and design challenges. To demystify the root
causes of these symptoms, we extensively survey the literature, and
report the symptoms to relevant VCPs. Fortunately, iQIYI gets back
to our report and offers us an opportunity to interview with their
development team. We obtain a number of findings on the methods
adopted by VCPs and the real-world dilemma they encounter.

Traditional byte-level data redundancy detection techniques [68]
lose efficacy for video clips, as different episodes have their unique
encoding parameters [27, 33]. Also, although CV methods that per-
form frame-wise analysis are more accurate, they consume tremen-
dous computation resources. This is unbearable for top VCPs that
publish tens of thousands of high-resolution videos every day (e.g.,
Youku and iQIYI). Besides, model pruning techniques that reduce
the number of parameters for CV models sacrifice the detection
coverage and accuracy, leading to Pattern 1 and 3 listed in Table 1.
Further, as audio fingerprinting techniques are vulnerable to finger-
print collisions and information loss, it is difficult to determine a
generic similarity threshold for all videos. This makes the accuracy
unpredictable, causing Pattern 1 and 2. The intros of some episodes
may even be recognized as outros when collisions occur, leading to
functional failure in the web player and causing Pattern 4.

3 DESIGN AND IMPLEMENTATION
3.1 System Overview
We present SkipStreaming, an accurate and lightweight visual re-
dundancy detection system for correlated videos. Our main idea
is to rethink about how the contents of correlated videos are or-
ganized during video production. Specifically, today’s correlated
videos are pervasively organized based on scene [40, 66]. A scene
is part of a video where a sequence of logically relevant events
occur, which is a widely-used concept in film making for producing
a coherent and intriguing storyline.

The notion of scenes provides us with a unique opportunity to
detect visual redundancy—the occurrence of intros, outros, recaps,
and commercials (no matter where and how long they are) is always
accompanied by scene changes. This is quite understandable since
they are inserted into the main story as content-wise independent
segments during video production. As a result, redundant clips will
not begin or end arbitrarily within a certain scene.

With the above scene insight, we build SkipStreaming based
audio-guided scene sketch, a multimodal (i.e., acoustic-narrative-
visual) fusion methodology. The key idea is that different scenes
usually have different characters’ speaking, ambient noises, back-
ground music, etc. SkipStreaming roughly sketches scenes by track-
ing acoustic variation in videos. Thereby, it can efficiently compare
a small number of video frames near scene transitions to locate
redundancy. Figure 5 depicts the workflow of SkipStreaming, which
takes a set of correlated videos as the input, and performs the fol-
lowing steps to recognize redundant clips:
• Per-Episode Scene Tree Construction (§3.2). To quickly identify

scene transitions using audio data, we divide the audio into slices
and devise a novel acoustic feature named scene-aware acous-
tic gradient (denoted as SceneGrad) to differentiate the acoustic
characteristics of the slices over time. Given that a redundant
clip may contain multiple similar coherent scenes, we further
recursively cluster scenes together by minimizing their holis-
tic SceneGrad. Such clustering process outputs a tree structure
(i.e., scene tree) for each episode, which models the inclusion
relationship between its probable redundant clips and scenes.

• Inter-Episode Scene Tree Matching (§3.3). After the scene tree
of each episode is constructed, SkipStreaming performs scene
tree matching between each pair of episodes to find potential
redundant clips that have similar scene organizations. To this
end, it examines the structural similarity of their common sub-
trees. As conventional tree matching approaches bear a high time
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complexity, SkipStreaming takes advantage of the temporal and
structural relationships among tree nodes for an approximate
matching result. Consequently, it picks out candidate redundant
scene sequences in different episodes, with the same duration
and similar scene organizations.

• Inter-Episode Scene Frame Comparison (§3.4). In order to deter-
mine whether the above candidate scene sequences are truly
redundant, SkipStreaming performs fine-grained video frame
matching near their scene transitions. It decompresses video
frames that embrace the scene transitions on demand, and finds
the optimal frame alignment based on the hamming distance of
frames’ pHash [71]. We accelerate this process using the multi-
index hashing [53] technique, which caches intermediate com-
parison results to avoid repetitive frame comparisons.

3.2 Per-Episode Scene Tree Construction
Acoustic feature extraction. Identifying the scene organization
in an episode is a crucial preliminary step for efficient redundancy
recognition. As mentioned before, different scenes usually present
different acoustic characteristics given their unique audio content
composition. Specifically, Figure 6 shows the decomposed frequency
components of the audio of an episode of the TV series The Coy-
otes [20]. The frequency-domain components of the recap, intro,
and outro differ significantly from those of the neighboring scenes.
Besides, Figure 7 shows the episode’s time-domain audio features,
i.e., amplitude envelope (AE), root mean square energy (RMS), and
zero-crossing rate (ZCR). There is also a clear boundary between
three redundant clips and their neighboring scenes. For example,
the AEs of the recap and the intro are around 0.2 and 0.3 respec-
tively, while that of the main story in between is around 0.08. Our
extensive investigation involving 200 randomly-sampled correlated
videos indicates that such dissimilarity in scenes’ acoustic features
widely exists. On average, the variance of the acoustic features at a
scene transition is 5.4 times higher than those inside a scene.

We thus extract both frequency-domain and time-domain audio
features for lightweight scene representation and to prepare for
scene transition detection. For each episode, we split its audio data
into equal-length and half-overlapped slices. We set the slice gap
to be the duration of a video frame, so that each slice is aligned to
a frame at the same time point. For each slice, we use the first 13
of mel-frequency cepstral coefficients (MFCCs) as the frequency-
domain feature, and AE, RMS, and ZCR as time-domain features.

Scene tree construction based on SceneGrad. After audio slices’
features are extracted, we use them to infer the scene organization

of the episode. As a redundant clip can contain multiple coherent
scenes, we wish to model the coherence of scene sequences, so
as to quickly pinpoint redundant clips in the next steps (§3.3 and
§3.4). To this end, we perform agglomerative clustering [50] to
merge temporally-adjacent and acoustically-similar audio slices
into macro-level scene clusters (each contains one or more scenes).
During the merging process, we minimize the feature variance
within the same cluster, while maximizing the variance between
different neighboring clusters.

We devise a novel acoustic feature called scene-aware acoustic
gradient (denoted as SceneGrad) to quantify such scene cluster vari-
ance, which acts as the linkage function [22] for agglomerative
clustering. Instead of simply differentiating the characteristics of
two adjacent audio slices, SceneGrad measures the weighted vari-
ance in audio slice features within a scalable time window. This
enables us to capture both local and holistic audio feature variation,
so as to largely avoid false predictions.

Formally, given two adjacent clustered audio slice sequences P =
{p1,p2, · · · ,pm } and Q = {q1,q2, · · · ,qn }, with their feature vec-
tors to be VP =

{
vp1 ,vp2 , · · · ,vpm

}
and VQ =

{
vq1 ,vq2 , · · · ,vqn

}
,

SceneGrad between this two clusters is defined as

SceneGrad (P,Q) =
1

|P ∪Q |

©­«
∑

k ∈P∪Q

wk · ∥vk − µPQ ∥2
ª®¬ , (1)

where µPQ is the centroid of all feature vectors inVP andVQ .wk is
the weight value for audio slice k , which increases as the location
of audio slice approaches the boundary between the two clusters
P and Q . Specifically, suppose that P is ahead of Q in the original
video episode. For audio slice k ∈ P ∪Q , we assign the weight value

wk =

{
i

1+2+· · ·+m ,k = pi ∈ P,
n+1−j

1+2+· · ·+n ,k = qj ∈ Q .
(2)

Compared with traditional similarity measures used in agglom-
erative clustering such as complete linkage and single linkage [50],
SceneGrad has a special focus on the smoothness of audio char-
acteristics within the same scene. This is achieved by assigning a
larger weight value to the adjacent audio slices that locate between
two clusters during the merging process. In this way, the similarity
or the difference between the connecting audio slices of the two
clusters will be magnified. As a result, slices with smooth changes
in characteristics have a higher priority to be clustered together.

In each iteration of agglomerative clustering, SkipStreaming se-
lects and merges two adjacent clusters with the minimal SceneGrad
increase after merging. If the SceneGrad exceeds a thresholdT after
merging, we mark the original two clusters as two complete scenes.
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In practice, T is set to be 0.56 times of the variance of all audio
slice features, which achieves a fine F1 score of 93% in identifying
scenes. As SkipStreaming continues to merge audio slices, more
clusters will be marked as complete scenes, and the adjacent co-
herent scenes will be further clustered as a coherent scene sequence.
Such sequence is likely to be a complete redundant clip due to its
smooth change in acoustic characteristics.

The above scene sequence clustering process finally outputs a
hierarchical structure of the input video episode (i.e., the scene tree
as shown in Figure 5). Each node in the scene tree represents a time
interval in the original episode. The derivation of two child nodes
from a parent node indicates the transition of the two adjacent
scenes. If the parent video segment has redundant clips, the scene
transition point between the two child nodes is the most likely
to be the beginning or ending of the redundancy, given its most
significant acoustic feature changes manifested by SceneGrad.

3.3 Inter-Episode Scene Tree Matching
With the scene tree of each episode, SkipStreaming performs scene
tree matching among all episodes to pick out probable redundant
clips. This step is also important because if we can rule outmost non-
redundant scene sequences, the subsequent frame matching will
avoid considerable unnecessary frame comparisons. Unfortunately,
traditional tree matching algorithms based on edit distance such
as RTED [54] and APTED [55] are not much efficient. It has been
proved that the tree edit distance problem cannot be solved in a
complexity lower than O(n3) [25], where n is the number of tree
nodes. This makes them infeasible for the pairwise comparison
among all episodes with tens of thousands of scene tree nodes.

We address the problem by using temporal relationships among
tree nodes as a heuristic to reduce the complexity. Specifically, if
two clips are visually redundant, they must have the same duration
and scene organization. For a pair of episodes to be compared, we
first extract sub-trees from their scene trees that have the same
number of leaf nodes. As illustrated in Figure 8, nodes in shadow
are the example extracted sub-trees a and b from scene trees A and
B, respectively. Note that there may be multiple disjoint sub-trees
with the same number of leaf nodes between each two episodes.

The above procedure benefits the matching process in two as-
pects. First, it ensures that the candidate redundant scene sequences
from two video episodes have the same time duration, since each
leaf node represents an equal-length audio slice (mentioned in §3.2).
Second, by only considering sub-trees, we can significantly reduce
the number of tree nodes to be compared. The time complexity of
sub-tree extraction is onlyO(m+n) the using hash map [32], where
m and n are the number of all tree nodes in two scene trees.

Due to lossy audio encoding, the constructed scene tree of redun-
dant clips may slightly differ. Thus, we next match the sub-trees to
measure the similarity of two episodes’ scene organization. We first
sequentially number the leaf nodes of sub-trees (a and b in Figure 8),
and then make use of the intermediate results of the clustering pro-
cess by denotingC as all leaf node clusters. For example in Figure 8,
Ca is {(1, 2) , (4, 5) , (1, 2, 3)}, and Cb is {(2, 3) , (4, 5) , (1, 2, 3)}. We
calculate the structural similarity between sub-tree a and b as

StructSIM(a,b) =
2 · |Ca ∩Cb |

|Ca | + |Cb |
. (3)

In practice, if StructSIM exceeds a tuned threshold of 0.72, we
determine that the video segments have similar scene organization.
In this way, we rule out the non-redundant clips that are different
in scene organization or time duration.

3.4 Inter-Episode Scene Frame Comparison
With thematched scene trees and the corresponding video segments
of all episodes of the series, SkipStreaming performs fine-grained
video frame matching on them to check if they are (or if they
contain) visual redundancy and outputs the marked timestamps.

Detecting redundant frames with pHash. As different videos
are encoded with different parameters, even a pair of frames from
two episodes are redundant, they may have pixel-level differences.
Thus, to determine whether frames are matched, we extract pHash
from the frames and calculate their hamming distance. Unlike com-
mon pHash algorithms that omit the high-frequency components
of discrete cosine transform (DCT) coefficients for accommodat-
ing manipulation in images [71], we preserve all coefficients. This
enables SkipStreaming to be sensitive to the pixel changes.

We now detail howwematch video frames. As shown in Figure 9,
suppose that we have two matched video segments (between the
two outermost dashed lines) of Episode S andT with the same scene
sub-tree structure1. Starting from the root node of the sub-tree,
SkipStreaming compares their video frames near scene transitions
(recall that an interior scene tree node represents a scene transition).
In the example, we first examine frames near the beginning of scene
A and ending of scene D, and find that frame 1○ is redundant while
frame 2○ is not. Thus, we search the ending position of the redun-
dant clip beginning at 1○, by examining the frame near the maximal
SceneGrad ( 3○). In this way of recursive frame comparisons over
the scene tree, we finally determine the exact timestamps.

In an encoded video file, except for I frames, the decoding of P
and B frames must depend on its precedent decoded frames [58].

1For simplicity, we let the example scene sequences have the same scene sub-tree. For
those whose sub-trees are not the same, we perform frame matching on each sub-tree.
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Therefore, when comparing frames near scene transitions, we ex-
amine all frames between two adjacent I frames that embrace the
scene transition, so as to accurately align redundant frames. We
call these frames a crucial group of pictures (or crucial GOP for
short). SkipStreaming aligns frame sequences in two crucial GOPs
by minimizing the average pHash hamming distance of the frames.

Faster frame comparisons using multi-index hashing. A re-
dundant clip may always appears in different episodes. To avoid
repetitive comparisons for the same redundant clip across episodes,
we cache pHash of examined frames using multi-index hashing
(MIH) [53]. When SkipStreaming compares video frames, it adds
their pHash into multi-index hash table. If the clip is redundant, it
will record the frame’s time offset in the clip. For an episode whose
frames have not been compared, SkipStreaming first looks up its
pHash in the hash table. Once a frame found in the table is marked
as redundant, SkipStreaming directly marks the clip as redundant
and generates the timestamps based on the recorded time offset.

4 EVALUATION
4.1 Experiment Setup
We evaluate SkipStreaming in terms of accuracy and time overhead
by comparing it with three state-of-the-art video redundancy de-
tection systems, namely Jellyfin Skipper [16], Kodi Detector [18],
and Amazon B-LSTM [37]. Among them, Jellyfin Skipper is an au-
dio fingerprinting-based approach, while Kodi Detector is a pure
CV-based one. In contrast, Amazon B-LSTM is a hybrid of CV and
audio fingerprinting techniques based on Bi-LSTM [57].

Our evaluation involves 16,238 episodes from 200 video series
collected on mainstream VCPs (9,251 hours in total). They cover a
wide variety of genres such as anime, dramas, and documentaries.
We run each solution on top of a commodity server with an Intel
Xeon 10-core CPU@2.4 GHz, 64-GB DDRmemory, 960-GB SSD, and
no GPU. We use the same methodology described in §2 to assess
the quality of the generated markers from users’ perspectives. If the
recruited users believe that the timestamp is correct, it is regarded
as a true positive. If they think that the timestamp deviates from the
right position, it is a false positive. If they find a clip is redundant
but not marked, then it is a false negative.

4.2 Detection Performance
Detection accuracy. Table 3 shows the overall detection accuracy
of the four approaches. Jellyfin Skipper yields the worst accuracy,
with the precision and recall being <70%. This is because the audio
fingerprinting technique is vulnerable to the noise introduced by
audio encoding, which makes the performance unstable across
different video series. Even if we fine-tune the fingerprint similarity
threshold to tolerate the noise for a higher recall (70%), the incurred
fingerprint collisions will significantly degrade the precision (61%).

For the two CV-based approaches, Kodi Detector and Amazon B-
LSTM, they have slightly better detection performance than Jellyfin
Skipper, but are still far from satisfactory (F1 score <0.8). Delving
deeper, we find that they both sacrifice the detection accuracy for
efficiency in their design. Kodi Detector samples video frames that
differ significantly from their precedent frames. It then regards all
frames between two sampled frames as redundant if they match

Table 3: Accuracy of the four solutions. # TP denotes the number
of true positives. # RC denotes the detected number of redundant
clips.

Solution Precision Recall F1 Score # TP # RC

Jellyfin 68% 62% 0.65 17,848 26,069
Kodi 76% 73% 0.75 21,280 27,868

Amazon 81% 75% 0.78 21,691 26,864
SkipStreaming 98% 93% 0.96 27,083 27,533

the frames in another video. This incurs a number of false positives
if the sampled frames are black frames between shot changes. Also,
Amazon B-LSTM simply samples one visual and audio feature per
second for model inference, without any inter-episode comparisons.

In contrast, SkipStreaming has the best accuracy (precision and
recall >90%) owing to its meticulous use of lightweight audio data
to sketch scenes and guide video comparisons. Of course, it incurs
false predictions in practice. Figure 10 shows the time deviation of
the four solutions when false positives occur. SkipStreaming incurs
the minimal time deviation (770 ms on average). By examining these
false positives, we find that they are mainly caused by gradual visual
transitions (e.g., fades and dissolves) between scenes. This makes
scene boundaries rather vague, and thus the detected time points
can slightly deviate from the user-perceived ones. Fortunately, the
contents of these false positives are not important to the story, so
they hardly affect user experiences. For false negatives, they are too
short (<5 seconds) and have no significant acoustic characteristic
changes. In practice, they hardly affect user experiences either.

System overhead. Figure 11 demonstrates the time overhead of
the four solutions. Jellyfin Skipper presents the lowest time over-
head (but the worst accuracy as discussed above) with an average
of 26.7 seconds. This is because it only uses lightweight audio fin-
gerprinting techniques. In comparison, the average time overhead
of SkipStreaming is 38.2 seconds, which is a bit higher than that
of Jellyfin Skipper due to its video frame processing. Nevertheless,
considering its significant accuracy improvement, we believe that
such time consumption increase is worthwhile.

The two CV-based approaches incur prohibitively high time
overhead. Kodi Detector takes 371.5 seconds on average to process
a single episode, while Amazon B-LSTM takes 524.7 seconds. This
is not surprising because they both go through the entire video and
perform heavyweight visual feature extraction and analysis. On
the other side, although SkipStreaming also involves video frame
processing, it selectively examines crucial video frames under the
guidance of audio data, thus achieving acceptable time overhead.

Performance on public datasets. To further demonstrate Skip-
Streaming’s efficacy, we evaluate it on the public BBC Planet Earth
dataset [24], which includes 11 episodes from the BBC’s documen-
tary and has been used by many studies in scene segmentation and
understanding for performance evaluation. SkipStreaming can de-
tect all redundant clips in the dataset with an average time deviation
of 542 ms and an average time cost of 41 seconds.

4.3 Ablation Study
We perform an ablation study to understand the contributions of
SkipStreaming’s each component to the overall efficacy.
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Figure 12: Ablation study for SkipStreaming.

Frequency-domain and time-domain features. As shown in
Figure 12, when we remove MFCCs, the precision and recall de-
crease to 96% and 89% respectively, and the overhead increases by
27%. Also, when we remove any time-domain feature, the accuracy
degrades by ∼1%, and the overhead increases by over 20%. This
indicates that the extracted audio features are all necessary for the
accuracy and efficiency. In fact, removing audio features results
in inaccurate scene transition detection. When false negatives of
scene transition detection occur, the redundant clips near them will
not be detected, leading to probabilistic skips. For false positives
of scene transition detection, they will cause subsequent steps to
process more video frames, and finally increase the time overhead.

SceneGrad and StructSIM. Disabling SceneGrad and StructSIM
significantly degrades the performance. When SceneGrad is re-
placed with the complete linkage function, the precision and the
recall drop by 3% and 7% respectively, with a 65% increase in over-
head. This indicates that SceneGrad well depicts the scene of videos.
Without it, scenes are segmented incorrectly, which adds unnec-
essary visual data analysis to frame matching. Besides, disabling
StructSIM causes a 2% drop in precision and a 6% drop in recall, with
a 58% increase in overhead. Thus, StructSIM is important for scene
tree matching to combat the introduced noise of audio encoding.

Multi-index hashing. As shown in Figure 12, removing MIH will
not affect the detection accuracy of SkipStreaming, but significantly
(40%) increases the overhead. This is because there is considerable
repeated video frame decoding and matching during inter-episode
comparisons, which incurs a lot of additional computation. By
caching and indexing these video frames using MIH, we can further
achieve significant performance improvement.

5 RELATEDWORK
Visual redundancy detection. There have been quite a fewmeth-
ods for automatically detecting visual redundancy among videos.
ViDeDup [39] is an application-aware video redundancy detection
system, which recognizes visually similar video sequences among
web videos based on video signature that depicts video’s color and
spatial-temporal distributions. Huang et al. [38] transform a video
into a one-dimensional video distance trajectory, and detect vi-
sual redundancy by comparing a sequence of compact signatures.
Other studies [42, 44, 67] propose whole-video redundancy detec-
tion schemes to reduce duplicate results for web video retrieving.

Different from these works, SkipStreaming detects visual redun-
dancy from correlated videos, and focuses much on the timing
accuracy of the generated redundancy markers.

Video scene segmentation and understanding. Segmenting
and understanding scenes from videos has long been a challenging
task. Towards this goal, many CV-based approaches have been pro-
posed [29, 56, 64], which typically cluster coherent frame/shot se-
quences using specially extracted visual features, and then feed the
features into Bi-LSTM for temporal analysis. Also, some VCPs [15,
21] record users’ seek actions on the player progress bar during
playback to roughly segment scenes. Further, to facilitate the re-
search on video scenes, a number of datasets have been built and
publicly released. For example, the MovieScenes [56] dataset con-
tains 21K annotated scene segments from 150 movies, while BBC
Planet Earth [24] derives from the episodes of BBC documentaries.

In comparison, SkipStreaming makes use of lightweight audio
data of videos to efficiently sketch scenes and identify scene transi-
tions. Such scene transition information is then strategically used
as guidance to speed up the detection of redundant video frames.

6 CONCLUSION
This paper presents SkipStreaming, an accurate and lightweight
user-oriented redundancy detection system for correlated videos
streaming over the web. The seemingly easy-to-mark redundant
clips have long been existent and harming user experiences, while
existing detection approaches are either inaccurate or inefficient.
We address the problem from the novel perspective of scenes, which
are the basic story units that compose a video. SkipStreaming ex-
tracts scene information via our specially-designed audio-guided
scene sketch methodology, and selectively compares a small portion
of video frames to quickly detect visual redundancy. Our evalua-
tions on numerous real-world correlated videos confirm its efficacy.
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